

- In this presentation, we will:
- Describe recursively defined functions
- Overview problems that can be solved recursive
- Look at mathematical problems defined recursively
- Factorial
- Binomial coefficients
- Fibonacci numbers
- Integer exponentiation
- Ackermann function
- Greatest common divisor
- Consider the effect on the call stack and describe tail recursion

- In the previous topic, we saw how a function could call itself
- If $\pi<x \leq 2 \pi$, you can calculates $\sin (x)$ by calculating $-\sin (x-\pi)$
- If $\pi / 2<x \leq \pi$, you can calculates $\sin (x)$ by calculating $\sin (\pi / 2-x)$
- When a function calls itself
- That call is said to be a recursive call
- The process is described as recursion
- Etymology:
- From the Latin verb recurrere meaning
"to run back" or "to run again"
- From English verb recur meaning
"to occur again periodically or repeatedly"
- Many algorithms for solving problems can be recursively defined:
- Searching a list of sorted numbers
- Sorting a list of unsorted numbers
- Fast integer multiplication
- Given random points scattered in the plane, find the pair that are closest to each other
- The fast Fourier transform
- Matrix-matrix multiplication
- Searching for a file within a directory
- Searching a maze
- Finding the convex hull of a set of points

- A problem that is defined recursively must:
- For some inputs, the problem must be easily solvable - These are called base cases
- For other inputs, the problem can be solved by first solving an easier problem, the solution to which can be used to solve the more current problem
- These are the recursive cases
- The more complex problems must ultimately lead to the easier problems

- We will focus on mathematical recursion:
- Mathematical expressions that are recursively defined
- Examples:
- Factorial
- Binomial coefficients
- Greatest common divisor
- Later in this course, we will see a binary search

- Format:
typename recursion(parameters...) \{

> // Base cases
if (condition-for-base-cases) \{
// Calculate and return the solution... return solution;
\}
// Recursive cases
// - determine simpler cases
// - will at some point call
// recursion(simpler-case-arguments...);
return solution;
\}

 Factorial

- The factorial can be defined recursively:

$$
n!= \begin{cases}1 & n=0 \\ n \cdot(n-1)! & n \geq 0\end{cases}
$$

- This defines n ! in terms of $(n-1)$!
- To calculate n !, you must calculate ($n-1$)!
- To calculate $(n-1)$!, you must calculate ($n-2$)!
- At some point, you need a result, and in this case, it is $0!=1$

$$
n!= \begin{cases}1 & n=0 \\ n \cdot(n-1)! & n \geq 0\end{cases}
$$

- For example:

$5!=5 \times 4!$	but $4!=4 \times 3!$		
but $3!=3 \times 2!$			
but $2!=2 \times 1!$			
but $1!=1 \times 0!$			
but $0!=1$		\quad	so $1!=1 \times 1=1$
:---			
so $2!=2 \times 1=2$			
so $3!=3 \times 2=6$			
so $4!=4 \times 6=24$			
so $5!=5 \times 24=120$			

 Factorial

- Implementing this
unsigned int factorial(unsigned int n) \{
// Base case
if ($\mathrm{n}==0$) \{
return 1;
\}
// Recursive case return $n * f a c t o r i a l(n-1) ;$ \}

$$
n!= \begin{cases}1 & n=0 \\ n \cdot(n-1)! & n \geq 0\end{cases}
$$

Eetirow

Binomial coefficients

- The binomial coefficient $\binom{n}{k}$ is defined as:
- The number of ways k items can be chosen from n unique items
- Related to Pascal's triangle
- A recursive definition is:

$$
\binom{n}{k}=\left\{\begin{array}{cl}
0 & k<0 \text { or } k>n \\
1 & k=0 \text { or } k=n \\
\binom{n-1}{k}+\binom{n-1}{k-1} & 0<k<n
\end{array}\right.
$$

- Implementing this
unsigned int binomial(unsigned int n, unsigned int k) \{ // Special cases:
if ($k>n$) \{
return 0;
\}
// Base cases:
$\binom{n}{k}=\left\{\begin{array}{cl}1 & k<0 \text { or } k>n \\ 1 & k=0 \text { or } k=n \\ \binom{n-1}{k}+\binom{n-1}{k-1} & 0<k<n\end{array}\right.$
if ($(k==0) \|(k==n))\{$ return 1;
\}
// Recursive case
return binomial (n - 1, k) + binomial (n - 1, k - 1);
\}

Greatest common divisor

- For $m \geq n \geq 0$, let $\operatorname{gcd}(m, n)$ be their greatest common divisor
- Because $m \geq n$, it follows $m=a n+r$

> - Consequently, $\operatorname{gcd}(m, n)$ must also divide both n and r
> - Thus, $\operatorname{gcd}(m, n)= \begin{cases}m & n=0 \\ \operatorname{gcd}(n, m \bmod n) & n>0\end{cases}$
unsigned int gcd(unsigned int m, unsigned int $n)\{$ // Special case:
if ($n>m$) \{
\}
if $(\mathrm{n}==0)\{$
return m;
else \{
return $\operatorname{gcd}(n, m \% n)$;
\}
(2000
\}

 Other recursively defined functions

- Integer exponentiation may be defined recursive in two ways:

$$
x^{n}=\left\{\begin{array}{cl}
1 & n=0 \\
\frac{1}{x^{-n}} & n<0 \\
x \cdot x^{n-1} & n>0
\end{array} \quad x^{n}=\left\{\begin{array}{cl}
1 & n=0 \\
\frac{1}{x^{-n}} & n<0 \\
\left(x^{m}\right)^{2} & n=2 m \text { with } m>0 \\
x \cdot\left(x^{m}\right)^{2} & n=2 m+1 \text { with } m \geq 0
\end{array}\right.\right.
$$

- You should implement both of these versions
- When we calculated n !, we performed a calculation with what was returned:

$$
\text { return } n * f a c t o r i a l(n-1) ;
$$

- We need to store the current parameter value of n to calculate the value after we calculate factorial ($n-1$)

return value for factorial(0)
parameter for factorial(1) parameter for factorial (2 parameter for factorial (3) parameter for factorial (4) parameter for factorial(5) parameter for factorial(6) parameter for factorial (7) local variable for main()

 The call stack and tail recursion

- Notice that when we call the recursive gcd, the return statement is just another function call:

$$
\text { return } \operatorname{gcd}(\mathrm{n}, \mathrm{~m} \% \mathrm{n}) \text {; }
$$

- The return value is whatever the called function returns
- No parameters or local variables of the current call to gcd are required-why keep the memory
- Some compilers will simply reuse the memory already on the stack - This is called tail recursion

The call stack and tail recursion

- In calculating $\operatorname{gcd}(9,6)$, when calling $\operatorname{gcd}(6,3)$, it will again reuse the memory on the call stack as opposed to adding to it
- In calculating $\operatorname{gcd}(6,3)$, when calling gcd(3 , o), it will again reuse the memory on the call stack as opposed to adding to it

parameters for $\operatorname{gcd}(6,3)$
ocal variable for main()
- The return value of 3 is put on the top of the stack, and thus is returned to main()

Recursive functions ${ }_{22}$ /
 The call stack and tail recursion

- In calculating $\operatorname{gcd}(3,0)$, because the $2^{\text {nd }}$ argument is 0 , it returns 3

parameters for $\operatorname{gcd}(3,0)$
local variable for main()

 The call stack and tail recursion

- Tail recursion can be used to minimize memory for recursive calls:

```
typename tail_recursion( parameters... ) {
    // Base cases
    if ( condition-for-base-cases ) {
        // Calculate and return the solution...
        return solution;
    }
    // Recursive cases
    // - determine simpler arguments
    return tail_recursion( simpler-case-arguments... )
}
```


Summary

- After this lesson, you now
- Understand the idea of literal data in source code
- You understand how to encode
- Integers

Characters
Strings
Floating-point numbers (reals)

- Boolean
in your source code
- Everything else in C++ deals with the storage and manipulation of data

Proof read by Dr. Thomas McConkey

 References

[1] Wikipedia
https://en.wikipedia.org/wiki/Recurrence relation
https://en.wikipedia.org/wiki/Recursion_(computer_science)

These slides were prepared using the Georgia typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas.

The photographs of lilacs in bloom appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see https://www.rbg.ca/
for more information.

These slides are provided for the ECE 150 Fundamentals of Programming course taught at the University of Waterloo. The material in it reflects the authors' best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

