
2019-09-18

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D.

dwharder@uwaterloo.ca hiren.patel@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Recursive functions

2
Recursive functions

Outline

• In this presentation, we will:

– Describe recursively defined functions

– Overview problems that can be solved recursive

– Look at mathematical problems defined recursively

• Factorial

• Binomial coefficients

• Fibonacci numbers

• Integer exponentiation

• Ackermann function

• Greatest common divisor

– Consider the effect on the call stack and describe tail recursion

3
Recursive functions

Recursion

• In the previous topic, we saw how a function could call itself

– If p < x ≤ 2p, you can calculates sin(x) by calculating –sin(x – p)

– If p/2 < x ≤ p, you can calculates sin(x) by calculating sin(p /2 – x)

• When a function calls itself

– That call is said to be a recursive call

– The process is described as recursion

• Etymology:

– From the Latin verb recurrere meaning

“to run back” or “to run again”

– From English verb recur meaning

“to occur again periodically or repeatedly”

4
Recursive functions

Recursion

• Many larger problems can be solved or calculated by solving a
similar, but simpler problem through the same means

– Consider the high-low game:

• You must guess a number from one to one million

– Strategy:

• Guess 500,000 and

– If you’re right, nicely done…

– If you are told that is low, guess 750,000

– If you are told that it is high, guess 250,000

– Guessing one number in one million is reduced to

guessing one number in 500,000, which is then reduced to

guessing one number in 250,000, which is then reduced to

guessing one number in 125,000, etc., etc.

• A maximum of 20 guesses is required

2019-09-18

2

5
Recursive functions

Recursion

• Many algorithms for solving problems can be recursively defined:

– Searching a list of sorted numbers

– Sorting a list of unsorted numbers

– Fast integer multiplication

– Given random points scattered in the plane, find the pair that are
closest to each other

– The fast Fourier transform

– Matrix-matrix multiplication

– Searching for a file within a directory

– Searching a maze

– Finding the convex hull of a set of points

6
Recursive functions

Recursion

• We will focus on mathematical recursion:

– Mathematical expressions that are recursively defined

• Examples:

– Factorial

– Binomial coefficients

– Greatest common divisor

• Later in this course, we will see a binary search

7
Recursive functions

Recursion

• A problem that is defined recursively must:

– For some inputs, the problem must be easily solvable

• These are called base cases

– For other inputs, the problem can be solved by first solving an easier
problem, the solution to which can be used to solve the more current
problem

• These are the recursive cases

– The more complex problems must ultimately lead to the easier
problems

8
Recursive functions

Recursion

• Format:

typename recursion(parameters…) {

// Base cases

if (condition-for-base-cases) {

// Calculate and return the solution...

return solution;

}

// Recursive cases

// - determine simpler cases

// - will at some point call

// recursion(simpler-case-arguments…);

return solution;

}

2019-09-18

3

9
Recursive functions

Factorial

• The factorial can be defined recursively:

• This defines n! in terms of (n – 1)!

– To calculate n!, you must calculate (n – 1)!

– To calculate (n – 1)!, you must calculate (n – 2)!

– At some point, you need a result, and in this case, it is 0! = 1

1 0
!

1 ! 0

n
n

n n n

10
Recursive functions

Factorial

• For example:

5! 5 4! but 4! 4 3!

but 3! 3 2!

but 2! 2 1!

but 1! 1 0!

but 0!

 1

so 1! 1 1

so 2! 2 1 2

so 3! 3 2 6

so 4! 4 6 24

so 5! 5 24 120

1

1 0
!

1 ! 0

n
n

n n n

11
Recursive functions

Factorial

• Implementing this

unsigned int factorial(unsigned int n) {

// Base case

if (n == 0) {

return 1;

}

// Recursive case

return n*factorial(n - 1);

}

1 0
!

1 ! 0

n
n

n n n

12
Recursive functions

Binomial coefficients

• The binomial coefficient is defined as:

– The number of ways k items can be chosen from n unique items

– Related to Pascal’s triangle

• A recursive definition is:

0 0 or

1 0 or

1 1
0

1

k k n

k k nn

k n n
k n

k k

n

k

2019-09-18

4

13
Recursive functions

Binomial coefficients

• Implementing this
unsigned int binomial(unsigned int n, unsigned int k) {

// Special cases:

if (k > n) {

return 0;

}

// Base cases:

if ((k == 0) || (k == n)) {

return 1;

}

// Recursive case:

return binomial(n - 1, k) + binomial(n - 1, k - 1);

}

0 0 or

1 0 or

1 1
0

1

k k n

k k nn

k n n
k n

k k

14
Recursive functions

Greatest common divisor

• For m ≥ n ≥ 0, let gcd(m, n) be their greatest common divisor

• Because m ≥ n, it follows m = an + r

– Consequently, gcd(m, n) must also divide both n and r

– Thus,

unsigned int gcd(unsigned int m, unsigned int n) {

// Special case:

if (n > m) {

return gcd(n, m);

}

if (n == 0) {

return m;

} else {

return gcd(n, m % n);

}

}

0
gcd ,

gcd , mod 0

m n
m n

n m n n

15
Recursive functions

Other recursively defined functions

• Fibonacci numbers are defined recursively:

• The Ackerman function looks simple, but leads to astronomically
large values:

1 2

0 0

1 1

2

n

n n

n

F n

F F n

1 0

, 1,1 1 and 0

1, , 1 1 and 1

n m

A m n A m m n

A m A m n m n

16
Recursive functions

Other recursively defined functions

• Integer exponentiation may be defined recursive in two ways:

– You should implement both of these versions

1

1 0

1
0

0

n

n

n

n

x n
x

x x n

2

2

1 0

1
0

2 with 0

2 1 with 0

n
n

m

m

n

n
x

x

x n m m

x x n m m

2019-09-18

5

17
Recursive functions

The call stack and tail recursion

• When we calculated n!, we performed a calculation with what was
returned:

return n*factorial(n - 1);

• We need to store the current parameter value of n to calculate the
value after we calculate factorial(n - 1)

1 return value for factorial(0)

1 n parameter for factorial(1)

2 n parameter for factorial(2)

3 n parameter for factorial(3)

4 n parameter for factorial(4)

5 n parameter for factorial(5)

6 n parameter for factorial(6)

7 n parameter for factorial(7)

… local variable for main()

18
Recursive functions

The call stack and tail recursion

• Notice that when we call the recursive gcd, the return statement is
just another function call:

return gcd(n, m % n);

– The return value is whatever the called function returns

• No parameters or local variables of the current call to gcd are
required—why keep the memory

• Some compilers will simply reuse the memory already on the stack

– This is called tail recursion

19
Recursive functions

The call stack and tail recursion

• For example, in calculating gcd(15, 9), when calling gcd(9, 6), it
will reuse the memory on the call stack as opposed to adding to it

int main() {

std::cout << gcd(15, 9) << std::endl;

return 0;

}

9 n parameters for gcd(15, 9)

15 m

… local variable for main()

20
Recursive functions

The call stack and tail recursion

• In calculating gcd(9, 6), when calling gcd(6, 3), it will again reuse
the memory on the call stack as opposed to adding to it

6 n parameters for gcd(9, 6)

9 m

… local variable for main()

2019-09-18

6

21
Recursive functions

The call stack and tail recursion

• In calculating gcd(6, 3), when calling gcd(3, 0), it will again reuse
the memory on the call stack as opposed to adding to it

3 n parameters for gcd(6, 3)

6 m

… local variable for main()

22
Recursive functions

The call stack and tail recursion

• In calculating gcd(3, 0), because the 2nd argument is 0, it returns 3

0 n parameters for gcd(3, 0)

3 m

… local variable for main()

23
Recursive functions

The call stack and tail recursion

• The return value of 3 is put on the top of the stack, and thus is
returned to main()

3 return value for gcd(3, 0)

… local variable for main()

24
Recursive functions

The call stack and tail recursion

• Tail recursion can be used to minimize memory for recursive calls:

typename tail_recursion(parameters…) {

// Base cases

if (condition-for-base-cases) {

// Calculate and return the solution...

return solution;

}

// Recursive cases

// - determine simpler arguments

return tail_recursion(simpler-case-arguments…);

}

2019-09-18

7

25
Recursive functions

Summary

• After this lesson, you now

– Understand the idea of literal data in source code

– You understand how to encode

• Integers

• Characters

• Strings

• Floating-point numbers (reals)

• Boolean

in your source code

– Everything else in C++ deals with the storage and manipulation of
data

26
Recursive functions

References

[1] Wikipedia

https://en.wikipedia.org/wiki/Recurrence_relation

https://en.wikipedia.org/wiki/Recursion_(computer_science)

27
Recursive functions

Acknowledgments

Proof read by Dr. Thomas McConkey

28
Recursive functions

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Recursion_(computer_science)

2019-09-18

8

29
Recursive functions

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

